Journal für praktische Chemie Chemiker-Zeitung

© Johann Ambrosius Barth 1996

Highly Substituted Anthraquinones by Anionic Cyclization Reactions

K. Krohn*, N. Böker, A. Gauhier, G. Schäfer and F. Werner
Paderborn, Universität-GH, FB 13 - Chemie und Chemietechnik, Fachgebiet Organische Chemie

Received December 11th, 1995 respectively January 24th, 1996

Abstract

Highly substituted anthraquinone esters (3a/b, 6, $\mathbf{2 0}$) and acids (12,21) are synthesized by base induced anionic

cyclizations starting from bisalkylated naphthalenes (e.g. 10) or monoalkylated naphthoquinones (e.g. 19).

Anthraquinones can easily be prepared using FriedelCrafts (a recent variation see [1]) or the Diels-Alder reactions (review [2]). However, the relatively harsh conditions of the Lewis acid-catalyzed reactions and the electronic requirements of the $[2+4]$ cycloaddition [3] often impose restrictions on the substitution pattern of highly functionalized derivatives.

In connection with ongoing investigations on anthracycline precursors $[4,5]$, synthetic angucycline antibiotics [6, 7], and the search for biologically active compounds in the field of osteoarthritis [8,9] we developed a series of short routes to highly substituted anthraquinone derivatives based on mild base induced cyclizations. In this context we have exploited the property of the 1,4-naphthoquinone and also of the 1,4-dihydroxyanthraquinone moieties as Michael acceptors. The scope of the methodology is very broad and depends primarily on the nature and substitution pattern of the side chain(s).

In the first part, we made use of an observation in connection with a synthesis of 4-deoxyaklanonic acid where the acetyl naphthofuran 1 could be cyclisized in high yield by treatment with t-BuOK and MeI to the tetrahydroanthracenone 2 [5]. In the context of this investigation we wanted to explore an operationally easy way for the conversion of 2 to the 4-deoxyakalvinone precursor 3a $[10,11]$ (Scheme 1). After some experimentation we found a good solution for the desired transformation (methylether cleavage and several dehydrogenation steps) in the combination of ceriumammonium nitrate (CAN) and Fetizon's reagent $\left(\mathrm{Ag}_{2} \mathrm{CO}_{3} /\right.$ celite $)$ which was recently used by Hauser et al. [12] for the dehydrogenation of partially hydrogenated anthraquinones.

In addition, we have found an alternative and mechanistically interesting pathway to $\mathbf{3 b}$ as a valuable starting material for aklavinon synthesis $[10,11]$ and also to the corresponding 8 -hydroxy derivative 6. We observed that quinizarine (4) and also 5 -hydroxyquinizarine (5) reacted with the sodium salt of dimethyl malonate in refluxing methanol to yield the deoxygenated anthraquinone acetic esters $\mathbf{3 b}$ and 6. A related

Scheme 1

observation with 4 and acetoacetate was previously made by Sutherland et al. [13]. The reaction probably involved Michael addition of the malonate to the tautomeric quinizarine forms $\mathbf{4 b} / \mathbf{5 b}$, cyclization to the γ-lactone intermediate \mathbf{A}, followed by retro Michael reaction with regeneration of the anthraquinoide system and decarboxylation to 3b and 6 (Scheme 1). Interestingly, the regioisomer 6 was the only product isolated in the reaction of 5 .

In connection with a biomimetic type synthesis of the anthracycline intermediate aklanonic acid [14] we have observed the facile addition of the 1,3 -diene 8 to 2-acetyl-1,4-naphthoquinone (7) to afford the spiroanellated naphthofuran 9 in 79% yield [5]. We wondered if 9 could undergo base-catalyzed cyclization reactions to yield potentially interesting anthraquinones. Various reaction pathways were possible. Base-catalyzed β elimination with opening of the spiro system ultimately led to aklanonic acid type compounds [5]. However, a different route was followed after blocking the phenolic hydroxyl as an acetate 10. The ester dienolate attacked the acetyl carbonyl followed by elimination, saponification of the phenolic acetate, and a series of oxidation steps to the anthraquinone 11. The overall yield of 73% for this reaction cascade involving at least five consecutive steps is surprisingly high. The acetonide protecting group remains unchanged during the cyclization, but can be cleaved quantitatively with BCl_{3} to afford the phenolic acid 12 (Scheme 2).

Scheme 2
The crucial cyclization step from $\mathbf{1 0}$ to $\mathbf{1 1}$ involved the reaction of two side chains attached to the naphthalene nucleus. Products with different substitution patterns were obtained by the intramolecular addition of nucleophilic centers in monoalkylated 1,4-naphthoquinones to the electrophilic naphthoquinone double bond.

A very priceworthy and generally applicable starting material for this reaction type is 2-methyl-1,4-naphthoquinone 13. The required dibromide 15 was obtained in one operation by reaction of $\mathbf{1 3}$ with a large excess of NBS [15], but the two step procedure via the monobromide 14 (Scheme 3) followed by NBS bromination was more economic. Nucleophilic displacement of the reactive quasi benzylic bromine with the β-ketoesters such as 16 [16] proceeded at mild conditions and in high yield (89%) to afford the adduct 17 . The protection of the quinoide vinylic position at $\mathrm{C}-2$ by bromine was absolutely necessary to prevent competitive Michael additions and also unwanted premature cyclizations. The bromine in adduct 17 was easily removed by catalytic hydrogenation followed by addition of dichlorodicyano benzoquinone (DDQ) for the reoxidation of the intermediate naphthohydroquinone to the quinone 18.

Scheme 3
The acetal protection group of $\mathbf{1 8}$ was cleaved quantitatively using a variation [17] of the method described by Huet et al. [18] (silica gel, $15 \% \mathrm{H}_{2} \mathrm{SO}_{4}$) to yield the β-diketone 19. The highly stabilized carbanion of 19 cyclized under very mild conditions ($\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{THF}$) to afford the anthraquinone 20 in 88% yield. The initial tetrahydroanthraquinone formed immediately after the Michael addition easily oxidizes to the quinone under the basic conditions used. Interestingly, no reaction of the nucleophilic side chain with the $\mathrm{C}-1$ quinone carbonyl was observed. The methyl ester $\mathbf{2 0}$ can be saponified to the acid 21 with sodium hydroxide.

Experimental

For general methods and instrumentation see ref. [19]

(4-Hydroxy-9, 10-dioxo-9,10-dihydroanthracen-2-yl)-acetic acid tert-butyl ester (3a)

An ice-cold solution of tetrahydroanthracenone 1 [5] (0.50 g, 1.4 mmol) in MeCN (40 ml) was treated dropwise with a solution of CAN ($1.79 \mathrm{~g}, 3.22 \mathrm{mmol}$) in water (8 ml). After 30 min the reaction mixture was quenched with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ brine (20 $\mathrm{ml} / 20 \mathrm{ml}$), the organic phase was separated, washed three times with brine (each 10 ml), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was removed at reduced pressure. The residue was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ and the solution was treated under N_{2} with Fetizon's reagent [20] ($1.58 \mathrm{~g}, 1 \mathrm{mmol} \mathrm{Ag}_{2} \mathrm{CO}_{3}$ in 0.57 g) and one drop of triethylamine. After stirring for 15 min the mixture was filtered through celite and evaporated at reduced pressure. The residue was filtered through a short column of silica gel (ethylacetate/petroleum ether $2: 8$) to afford anthraquinone $3 \mathrm{a}\left(0.34 \mathrm{~g}, 84 \%\right.$; m.p. $123^{\circ} \mathrm{C}$).

$$
\begin{array}{llll}
\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{5} \text { (338.4) } & \text { Calcd. } & \mathrm{C} 71.00 & \mathrm{H} 5.36 \\
& \text { Found } & \mathrm{C} 71.12 & \text { H } 5.48
\end{array}
$$

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $v=2984,1729(\mathrm{C}=\mathrm{O}$, ester), 1674 ($\mathrm{C}=\mathrm{O}$, quinone), 1636, 1275, 1136. - UV (methanol): $\lambda_{\text {max }}(\lg \varepsilon)=$ 223 nm (4.28), 253 (4.46), 328 (3.48), 402 (3.75). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.47\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right], 3.64(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), $7.23\left(\mathrm{~s}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 7.75\left(\mathrm{~s}, \mathrm{l}^{\prime} \mathrm{H}, 1-\mathrm{H}\right), 7.79-7,83(\mathrm{~m}, 2$ $\left.\mathrm{H}, 6^{\prime}-\mathrm{H}, 7^{\prime}-\mathrm{H}\right), 8.28-8.33\left(\mathrm{~m}, 2 \mathrm{H}, 5^{\prime}-\mathrm{H}, 8^{\prime}-\mathrm{H}\right), 12.56(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{OH}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=27.8\left[\mathrm{q}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $42.7\left(\mathrm{t}, \mathrm{CH}_{2}\right), 81.6\left[\mathrm{~s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right], 114.8(\mathrm{~s}), 120.6(\mathrm{~d}, \mathrm{C}-3 \mathrm{l})$, 124.5 (d, C-1), 126.7 (d), 127.2 (d), 133.0 (s), 133.2 (s), 133.4 (s), 134.0 (d), 134.4 (d), 144.3 ($\left.s, C-1^{\prime}\right), 162.5$ (s, C-4'), 168.9 [s, $\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$], 182.2 (s, CO quinone), 188.0 (s, CO quinone). $-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)=338(12)\left[\mathrm{M}^{+}\right], 282$ (100) $\left[\mathrm{M}^{+}-\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 265(18)\left[\mathrm{M}^{+}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{OH}\right]$, 209 (16), 181 (8), 152 (24).

(4-Hydroxy-9,10-dioxo-9,10-dihydroanthracen-2-yl)-acetic acid methyl ester (3b)

A solution of sodium methyl malonate [prepared from sodium ($2.3 \mathrm{~g}, 100 \mathrm{mmol}$), methyl malonate ($8.5 \mathrm{ml}, 75 \mathrm{mmol}$), and dry methanol (20 ml)] was added under nitrogen to a solution of quinizarine (4) ($5 \mathrm{~g}, 20 \mathrm{mmol}$) in methanol (250 ml). The mixture was refluxed for 3 d , then carefully neutralized by addition of acetic acid ($6.2 \mathrm{ml}, 100 \mathrm{mmol}$), and evaporated at reduced pressure to a volume of ca. 50 ml . Dichloromethane $(100 \mathrm{ml})$ was added, the mixture was filtered, the filtrate washed three times with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the filtrate was evaporated to dryness at reduced pressure. The residue was purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford from the fraction of medium polarity methyl ester 3b ($2.85 \mathrm{~g}, 50 \%$); m.p. $146^{\circ} \mathrm{C}$.
$\begin{array}{llll}\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{5}(296.3) & \text { Calcd. } & \mathrm{C} 68.92 & \mathrm{H} 4.08 \\ & \text { Found } & \mathrm{C} 68.76 & \mathrm{H} 3.85\end{array}$
IR (KBr, cm^{-1}): $v=3400(\mathrm{OH}), 2969(\mathrm{CH}), 1730,1639,1591$ (CO), 1343, 1278, $1206(\mathrm{OH}, \mathrm{CH}) .-\mathrm{UV}(\mathrm{MeOH}): \lambda_{\max }(\lg \varepsilon)$ $=206$ (4.23), 223 (4.23), 253 (4.38), 328 (3.47), 403 (3.73) nm . - ${ }^{\mathrm{H}} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 3.71 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), $7.20\left(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 7.70(\mathrm{~d}, 1$ $\left.\mathrm{H}, J=1.5 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 7.78\left(\mathrm{~m}, 2 \mathrm{H}, 5^{\prime}-\mathrm{H}, 8^{\prime}-\mathrm{H}\right), 8.25(\mathrm{~m}, 2 \mathrm{H}$,
$\left.6^{\prime}-\mathrm{H}, 7^{\prime}-\mathrm{H}\right), 12.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=41.77\left(\mathrm{t}, \mathrm{CH}_{2}\right), 52.84\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 121.15(\mathrm{~d})$, 125.14 (d), 127.30 (d), 127.86 (d), 133.57 (2 C, s), 133.92 (2 C, s), 134.64 (d), 135.07 (d), 144.05 ($\mathrm{s}, \mathrm{C}-2$ '), 163.12 (s, C 4'), 170.74 (s, COOCH_{3}), 182.65 (s, CO), 188.64 (s, CO). MS (EI, 70 eV): $m / z(\%)=296(100)\left[\mathrm{M}^{+}\right], 237(56), 209$ (51), 152 (42).
(4,8-Dihydroxy-9,10-dioxo-9,10-dihydroanthracen-2-yl)acetic acid methyl ester (6)

Ester 6 was obtained as described for 3b from methyl malonate ($14.4 \mathrm{ml}, 64 \mathrm{mmol}$) and 1,4,5-trihydroxyanthraquinone (5) ($2.048 \mathrm{~g}, 8 \mathrm{mmol}$); yield $0.849 \mathrm{~g}(34 \%)$; m.p. $162^{\circ} \mathrm{C}$.
$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{6}(312.3) \quad$ Calcd. $\mathrm{C} 65.27 \quad \mathrm{H} 3.87$
Found C $65.19 \quad$ H 3.78
IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): \nu=3443(\mathrm{OH}), 2973(\mathrm{CH}), 1728,1635,1612$ $(\mathrm{CO}), 1342,1290(\mathrm{OH}, \mathrm{CH}) .-\mathrm{UV}(\mathrm{MeOH}): \lambda_{\text {max }}(\mathrm{lg})=221$ nm (4.23), 253 (4.18), 388 (3.56), 4.16 (2.54). -- ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.78(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), 7.32 (m, $\left.2 \mathrm{H}, 3^{\prime}-\mathrm{H}, 7^{\prime}-\mathrm{H}\right), 7.82\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{l}^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\right.$ $\mathrm{H}), 12.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 12.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=41.73\left(\mathrm{t}, \mathrm{CH}_{2}\right), 52.91\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 119.78$ (d), 120.97 (d), 125.41 (d), 125.76 (d), 133.56 ($2 \mathrm{C}, \mathrm{s}$), 133.66 (2 C, s), 137.27 (d), 144.13 (s, C-2'), 163.22 (s), 163.33 (s$)$, 170.66 (s, COOCH_{3}), 187.92 (s, CO), 188.16 (s, CO). - MS $\left(\mathrm{EL} / 302{ }^{\circ} \mathrm{C}\right): m / z(\%)=312(100)\left[\mathrm{M}^{+}\right], 253(48), 225(57)$, 197 (18).

4'-Acetyl-5'-hydroxy-2,2-dimethylspirol1,3-dioxane4, 2'(3'H)-naphtho[1,2-b]furan]-6'-one (9)

A solution of quinone 7 [21] ($700 \mathrm{mg}, 3.5 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 ml) was treated dropwise at $78^{\circ} \mathrm{C}$ with silylether 8 [22] ($901 \mathrm{mg}, 4.2 \mathrm{mmol}$). After stirring for 30 min the mixture was allowed to warm to $20^{\circ} \mathrm{C}(1 \mathrm{~h})$ and stirring was continued for 1.5 h . The solution was then quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 ml), the organic phase was separated, and the aqueous phase was washed twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (each 10 ml). The combined organic phases were treated with brine $(20 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the solvent was removed at reduced pressure. Crystallization of the resulting oil from ether (10 $\mathrm{ml})$ afforded the spiro compound $9(950 \mathrm{mg}, 79 \%$, m.p. 122 ${ }^{\circ} \mathrm{C}$).

$$
\begin{array}{llll}
\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{6}(342.5) & \text { Calcd. } & \mathrm{C} 66.66 & \text { H } 5.30 \\
& \text { Found } & \text { C } 66.59 & \text { H } 5.20
\end{array}
$$

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $v=3414(\mathrm{OH}), 3009,2923,1746(\mathrm{C}=\mathrm{O})$, $1618(\mathrm{C}=\mathrm{C}), 1387,1359,1279 .-\mathrm{UV}($ methanol $): \lambda_{\text {max }}(\lg \varepsilon)$ $=221 \mathrm{~nm}$ (4.28), 252 (4.08), 278 (4.04), 418 (3.57). $-{ }^{1} \mathrm{H}-$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.62$ and $1.83[2 \mathrm{~s}, 6 \mathrm{H}$, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$], $2.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 3.21\left(\mathrm{AB}\right.$ signal, $J_{\mathrm{AB}}=17.6$ $\mathrm{Hz}, 2 \mathrm{H}), 3.70\left(\mathrm{AB}\right.$ signal, $\left.J_{\mathrm{AB}}=16.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.54(\mathrm{~m}, 1 \mathrm{H}$, Ar-H), $7.66(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H), 8.47 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H), 14.31 (s, $1 \mathrm{H}, \mathrm{OH}) .-{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.4$ and $29.8\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right]$, 30.5 (q, COCH_{3}), 38.7 (t), 47.8 (t), 106.6 (s, C-2'), 107.4 (s), 110.6 (s), 112.9 (s), 120.7 (d), 124.4 (s), 125.0 (d), 125.3 (s), 126.1 (d), 130.4 (d), 144.5 (s), 159.5 (s), 170.0 (s, C-6'), 203.5 $\left(\mathrm{s}, \mathrm{COCH}_{3}\right) .-\mathrm{MS}(70 \mathrm{eV}): m / z(\%)=342(1)\left[\mathrm{M}^{+}\right], 284$ (3) $\left[\mathrm{M}^{+}-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}\right], 240(100)\left[\mathrm{M}^{+}-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}-\mathrm{CH}_{3} \mathrm{CO}\right], 225$ (54), 222 (55), 197 (13).

5'-Acetoxy-4'-acetyl-2,2-dimethylspiro[1,3-dioxane-4,2'(3'H)-naphthol1,2-blfuran]-6'-one (10)

A solution of the phenol $9(550 \mathrm{mg}, 1.65 \mathrm{mmol})$ in dry THF $(15 \mathrm{ml})$ was treated at $0^{\circ} \mathrm{C}$ with $\mathrm{NaH}(77 \mathrm{mg}$ of a 60% suspension in oil, 1.98 mmol). After stirring for 1 h freshly distilled acetyl chloride ($0.14 \mathrm{ml}, 1.98 \mathrm{mmol}$) was added and stirring was continued for 30 min at $22^{\circ} \mathrm{C} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$ was added at $0^{\circ} \mathrm{C}$, the mixture was hydrolyzed by addition of water (5 ml), and acidified with $2 \mathrm{NHCl}(10 \mathrm{ml})$. The organic phase was separated, washed twice with water (10 ml) and then with brine (10 ml), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and filtered. The solvent was removed at reduced pressure and the acetate $\mathbf{1 0}$ ($560 \mathrm{mg}, 88 \%$) was crystallized from ether/petroleum ether ($5 \mathrm{ml} / 5 \mathrm{ml}$); m.p. $113^{\circ} \mathrm{C}$ decomp.).
$\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{7}$ (384.4) \quad Calcd. \quad C $65.62 \quad$ H 5.24

Found C 65.78 H 5.46

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $v=1748$ ($\mathrm{C}=\mathrm{O}$ ester), $1694(\mathrm{C}=\mathrm{O}$ ketone), $1372\left(\mathrm{OCOCH}_{3}\right), 1306,1202 .-\mathrm{UV}($ methanol $): \lambda_{\text {max }}(\lg \varepsilon)=$ $220 \mathrm{~nm}(4.39), 238$ (4.34), 252 (4.28), 301 (3.56), 350 (3.49). $-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.61$ and $1.81[2 \mathrm{~s}, 6 \mathrm{H}$, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$], $2.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right), 2.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right)$, $3.17\left(\mathrm{AB}\right.$ signal, $\left.J_{\mathrm{AB}}=17.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.67\left(\mathrm{AB}\right.$ signal, $J_{\mathrm{AB}}=$ $17.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.62\left(\mathrm{~m}, 2 \mathrm{H}, 7^{\prime}-\mathrm{H}, 8^{\prime}-\mathrm{H}\right), 7.77-7.84(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.92-7.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=20.9\left(\mathrm{q}, \mathrm{OCOCH}_{3}\right), 28.6$ and $29.7\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right]$, $\left.31.0\left(\mathrm{q}, \mathrm{COCH}_{3}\right), 38.6(\mathrm{t}), 40.0(\mathrm{t}), 106.6(\mathrm{~s}, \mathrm{C}-2)^{\prime}\right), 109.0(\mathrm{~s}$, spiro-C), 116.2 (s), 121.4 (d), 122.0 (s), 122.7 (d), 125.7 (s), 127.0 (s), 127.3 (d), 128.2 (d), 140.5 (s), 150.7 (s), 165.0 (s, $\left.\mathrm{OCOCH}_{3}\right), 169.5(\mathrm{~s}, \mathrm{C}-4), 197.9\left(\mathrm{~s}, \mathrm{COCH}_{3}\right) .-\mathrm{MS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right.$, neg.): $m / z(\%)=384(44)\left[\mathrm{M}^{+}\right], 341(58)\left[\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{CO}\right], 322$ (31), 283 (19), 282 (51), 240 (45), 239 (100), 147 (53), 121 (21).

2,2,5-Trimethyl-1,3-dioxanaphthacen-4,6,11-trione (11)

A solution of the acetate $10(250 \mathrm{mg}, 0.65 \mathrm{mmol})$ in THF (15 ml) was treated at $0^{\circ} \mathrm{C}$ under an atmosphere of oxygen with NaH ($132 \mathrm{mg}, 3.25 \mathrm{mmol}$ of a 60% dispersion in oil). After warming to room temperature stirring was continued for 3 h and the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$. The excess of NaH was hydrolyzed at $0^{\circ} \mathrm{C}$ by addition of water (20 ml), the mixture was acidified with $2 \mathrm{~N} \mathrm{HCl}(5 \mathrm{ml})$, the organic phase was separated, washed with water (15 ml) and brine (15 ml), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and filtered. The filtrate was evaporated at reduced pressure and the residue chromatographed (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to yield pure trione $11(154 \mathrm{mg}$, 73%) as a yellow solid; m.p. $188^{\circ} \mathrm{C}$.

$$
\begin{array}{llll}
\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{5}(322.3) & \text { Calcd. } & \mathrm{C} 70.80 & \mathrm{H} 4.38 \\
& \text { Found } & \mathrm{C} 70.80 & \mathrm{H} 4.71
\end{array}
$$

$\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): v=2931,1740(\mathrm{C}=\mathrm{O}), 1678$ (quinone), 1661, 1586, 1327, 1262. - UV (methanol): $\lambda_{\text {max }}(\lg \varepsilon)=231 \mathrm{~nm}$ (4.14), 246 (4.16), 274 (4.24), 460 (2.77). - ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.80\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 3.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right)$, $7.73-7.88(\mathrm{~m}, 2 \mathrm{H}, 8-\mathrm{H}, 9-\mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}, 12-\mathrm{H}), 8.20-8.28$ $(\mathrm{m}, 2 \mathrm{H}, 7-\mathrm{H}, 10-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=19.9$ $\left(\mathrm{q}, \mathrm{ArCH}_{3}\right), 26.1\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 106.4$ (s, C-2), 115.0 (d, C12), 118.5 (s), 127.1 (d), 128.0 (d), 132.5 (s), 133.9 (d), 135.3 (d), 135.9 (s), 140.4 (s), 150.8 (s), 159.4 (s), 160.2 (s), 182.7 and 183.9 (2 s , quinone). - MS (EI, 70 eV): $m / z(\%)=322$ (11) $\left[\mathrm{M}^{+}\right], 264(100)\left[\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right], 236$ (32) $\left[\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}-\right.$

CO], $208(14)\left[\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}-2 \mathrm{CO}\right], 180(13)\left[\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right.$ $-3 \mathrm{CO}], 152(14)\left[\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}-4 \mathrm{CO}\right]$.

3-Hydroxy-1-methyl-9,10-dioxo-9,10-dihydroanthracene-2-

 carboxylic acid (12)A solution of acetonide $11(135 \mathrm{mg}, 0.42 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (8 ml) was treated at $22{ }^{\circ} \mathrm{C}$ with a 1 M solution of BCl_{3} [compare ref. 23] in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.16 ml). After stirring for 10 \min the mixture was diluted with ethyl acetate (30 ml) and quenched with water (15 ml). The aqueous phase was saturated with NaCl , the organic phase was separated, washed twice with brine (each 10 ml), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and filtered. The filtrate was evaporated at reduced pressure to afford pure carboxylic acid 12 ($118 \mathrm{mg}, 99 \%$); m.p. $245^{\circ} \mathrm{C}$ (decomp.).

$$
\begin{array}{llll}
\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{O}_{5}(282.3) & \text { Calcd. } & \mathrm{C} 68.09 & \mathrm{H} 3.57 \\
& \text { Found } & \mathrm{C} 67.91 & \mathrm{H} 3.73
\end{array}
$$

$\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): v=3372(\mathrm{OH}), 2924,1707(\mathrm{C}=\mathrm{O}$ acid $), 1671$ (quinone), 1570, 1306, 1273, 1254. - ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz , $\mathrm{MeOH}): \delta=1.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.83(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.96-7.06$ (m, $2 \mathrm{H}, 6-\mathrm{H}, 7-\mathrm{H}$), 7.36 (m, $2 \mathrm{H}, 5-\mathrm{H}, 8-\mathrm{H}$). - ${ }^{13} \mathrm{C}-\mathrm{NMR}(75$ $\mathrm{MHz}, \mathrm{MeOH}): \delta=20.0\left(\mathrm{q}, \mathrm{CH}_{3}\right), 112.8$ (d, C-4), 125.0 (s), 127.3 (d), 128.0 (d), 131.7 (s), 133.6 (s), 134.3 (d), 135.4 (d), 136.3 (s), 138.2 (s , , 142.3 (s$), 159.5$ (s$), 171.2$ ($\mathrm{s}, \mathrm{CO}_{2} \mathrm{H}$), 184.1 and 184.5 (2 s , quinone). $-\mathrm{MS}(E I, 70 \mathrm{eV}$): $\mathrm{m} / \mathrm{z}(\%)=$ 282 (72) [$\left.\mathrm{M}^{+}\right], 264$ (100) [$\left.\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right], 236$ (42) [$\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-$ CO], 208 (26) [$\left.\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-2 \mathrm{CO}\right], 180$ (24), 152 (33), 76 (16).

2-Bromo-3-bromomethyl-1,4-naphthoquinone (15)

A solution of 2-bromo-3-methyl-1,4-naphthoquinone (10.0 g , 39.8 mmol), obtained by bromination of 3-methyl-1,4naphthoquinone [15]) in acetic acid anhydride (160 ml) was treated with NBS $(8.00 \mathrm{~g}, 44.9 \mathrm{mmol})$ and AIBN $(0.50 \mathrm{~g}, 3.0$ mmol). The mixture was heated to $130-140^{\circ} \mathrm{C}$ for 45 min , the cold solution $\left(20^{\circ} \mathrm{C}\right)$ was poured into ice-water (11), the precipitate was collected by filtration, washed with water, and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (200 ml). The solution was dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered, and the volume of the filtrate was reduced at reduced pressure to ca. 50 ml . The dibromide 15 was crystallized by addition of petroleum ether to afford 10.9 g (83%); m.p. $121.2^{\circ} \mathrm{C}$, ref. [24] m.p. $119-120^{\circ} \mathrm{C}$.
$-{ }^{1} \mathrm{H}$-NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=4.62\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}\right)$, $7.73-7.85(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}, 7-\mathrm{H}), 8.11-8.21(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}, 8-\mathrm{H})$. ${ }_{--}{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=26.03\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{Br}\right), 127.84$ (d, C-5, C-8), 128.20 (d, C-5, C-8), 131.52 ($\mathrm{s}, \mathrm{C}-4 \mathrm{a}, \mathrm{C}-8 \mathrm{a}$), 131.64 ($\mathrm{s}, \mathrm{C}-4 \mathrm{a}, \mathrm{C}-8 \mathrm{a}$), 134.78 (d, C-6, C-7), 135.01 (d, C-6, $\mathrm{C}-7$), 141.42 (s, C-2), 146.70 ($\mathrm{s}, \mathrm{C}-3$), 177.76 (s, C-1, C-4), 180.03 (s, C-1, C-4).

2-(3-Bromo-1,4-dioxo-1,4-dihydronaphthalen-2-ylmethyl)-4-(2-methyl-[1,3]dioxolan-2-yl)-3-oxobutanoic acid methyl ester (17)

A solution of dibromonaphthoquinone $15(2.00 \mathrm{~g}, 6.1 \mathrm{mmol})$ in THF (50 ml) was treated at $-15^{\circ} \mathrm{C}$ under argon with a solution of the sodium salt of β-ketoester 16 [prepared from a solution of $16(2.44 \mathrm{~g}, 12.1 \mathrm{mmol})$ in THF (30 ml) and NaH ($290 \mathrm{mg}, 12.1 \mathrm{mmol}$)]. After stirring for 30 min at this temperature the mixture was allowed to warm to $20^{\circ} \mathrm{C}$, diethyl ether (100 ml) was added, the organic phase was washed with
saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated at reduced pressure. The residue was purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / 2 \%\right.$ $\mathrm{CH}_{3} \mathrm{OH}$) to afford 17 ($2.36 \mathrm{~g}, 89 \%$); m.p. $99^{\circ} \mathrm{C}$ (petroleum ether).
$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{7} \mathrm{Br}(451.3) \quad$ Calcd. $\mathrm{C} 53.23 \quad \mathrm{H} 4.24$
Found C 53.12 H 4.18
IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): v=2953(\mathrm{C}-\mathrm{H}), 2890(\mathrm{C}-\mathrm{H}), 1730$ (ester CO), 1674 (CO), 1659 (quinone), 1591 (arom. $\mathrm{C}=\mathrm{C}$), 1281 $(\mathrm{C}-\mathrm{Br}) .-\mathrm{UV}$ (methanol): $\lambda_{\max }(\lg \varepsilon)=206 \mathrm{~nm}(4.12), 246$ (4.08), 252 (4.08), $282(4.06), 335(3.36) .-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $200 \mathrm{MHz}): \delta=1.35\left(\mathrm{~s}, 3 \mathrm{H}\right.$, dioxolane $-\mathrm{CH}_{3}$), AB system (δ_{A} $=2.82$), $\left.\delta_{\mathrm{B}}=3.02,{ }^{2} J_{\mathrm{AB}}=13.8 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{H}\right), \mathrm{AMX}$ system $\left[\delta_{\mathrm{A}}=4.16\left(\mathrm{dd},{ }^{3} J_{\mathrm{AM}}=8.4 \mathrm{~Hz},{ }^{3} J_{\mathrm{AX}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), \delta_{\mathrm{M}}=\right.$ $3.48\left(\mathrm{dd},{ }^{3} J_{\mathrm{AM}}=8.4 \mathrm{~Hz},{ }^{2} J_{\mathrm{MX}}=13.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, quinone $\left.-\mathrm{CH}_{2}\right)$, $\delta_{\mathrm{X}}=3.42\left(\mathrm{dd},{ }^{3} J_{\mathrm{AX}}=6.6 \mathrm{~Hz},{ }^{2} J_{\mathrm{MX}}=13.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, quinone$\left.\left.\mathrm{CH}_{2}\right)\right], 3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.82-3.98\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, 7.73-7.79 (m, 2 H, 6'-H, 7'-H), 8.09-8.16 (m, $2 \mathrm{H}, 5^{\prime}-\mathrm{H}, 8^{\prime}-$ $\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 60 \mathrm{MHz}\right): \delta=24.24\left(\mathrm{q}, \mathrm{CH}_{3}\right), 29.75$ (t, CH_{2}), $50.69(\mathrm{t}, \mathrm{C}-4), 52.80\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 56.70(\mathrm{~d}, \mathrm{C}-2), 64.33$ and $64.58\left(2 \times \mathrm{t}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 107.71$ (s, dioxolane OCO), 126.99 (d, C-5', C-8'), 127.44 (d, C-5', C-8'), 130.84 (s, C-4a', C-8a'), 131.29 (s, C-4a', C-8a'), 133.92 (d, C-6', C-7'), 134.15 (d, C-6'-, C-7'), 140.03 (s, C-2', C-3'), 148.60 (s, C-2', C-3'), 168.95 (s, C-1), 177,18 (s, C-1', C-4'), 181.35 (s, C-1', C-4'), 199.97 (s, C-3). - MS (EI/100 C): $m / z(\%)=438 / 436(0.6$, isotope peaks), $437 / 435(1.4)\left[\mathrm{M}^{+}-\mathrm{CH}_{3}\right], 406 / 404(<0.1), 403 /$ 405 (0.5), $319 / 317(2.6), 87(100)\left[\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)^{+}\right]$, 43 (23).

2-(1,4-Dioxo-1,4-dihydronaphthalen-2-ylmethyl)-4-(2-me-thyl-[1,3]dioxolan-2-yl)-3-oxobutanoic acid methyl ester (18)

A suspension of bromonaphthoquinone $17(3.0 \mathrm{~g}, 6.65 \mathrm{mmol})$ and $\mathrm{CaCO}_{3}(6.6 \mathrm{~g}, 66 \mathrm{mmol})$ in dry methanol $(100 \mathrm{ml})$ was hydrogenated at $22^{\circ} \mathrm{C}$ and 1 atm over palladium/charcoal. After 5 h the calculated amount of hydrogen was consumed. The suspension was filtered under nitrogen, DDQ ($1.66 \mathrm{~g}, 7.3$ mmol) was added, the solution was stirred for 10 min , and the solvent was removed at reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$, washed with saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$, dried (MgSO_{4}), filtered, and purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford 18 ($2.2 \mathrm{~g}, 89 \%$, oil).
$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{7}$ (372.4) Calcd. C $64.51 \quad \mathrm{H} 5.41$
Found C 64.55 H 5.24
$U V($ methanol $): \lambda_{\text {max }}(\lg \varepsilon)=203 \mathrm{~nm}(3.95), 252(4.11), 331$ (3.24). - IR (KBr, cm ${ }^{-1}$): $v=2975(\mathrm{C}-\mathrm{H}), 1746$ (ester CO), 1717 (CO), 1663 (quinone), 1595 (arom. $\mathrm{C}=\mathrm{C}$), 1049. $-{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=1.33\left(\mathrm{~s}, 3 \mathrm{H}\right.$, dioxolane- $\left.\mathrm{CH}_{3}\right)$, AB system ($\delta_{\mathrm{A}}=2.84, \delta_{\mathrm{B}}=3.04,{ }^{2} J_{\mathrm{AB}}=13.4 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{H}$), AMX system $\left[\delta_{\mathrm{A}}=4.19\left(\mathrm{dd},{ }^{3} J_{\mathrm{AM}}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), \delta_{\mathrm{M}}=\right.$ $3.08\left(\mathrm{dd},{ }^{3} J_{\mathrm{AM}}=7.3 \mathrm{~Hz},{ }^{2} J_{\mathrm{MX}}=13.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, quinone $\left.-\mathrm{CH}_{2}\right)$, $\delta_{\mathrm{X}}=3.11\left(\mathrm{dd},{ }^{3} J_{\mathrm{AX}}=6.6 \mathrm{~Hz},{ }^{2} J_{\mathrm{MX}}=13.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, quinone$\left.\left.\mathrm{CH}_{2}\right)\right], 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.90\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 6.84$ (s, $1 \mathrm{H}, 3-\mathrm{H}), 7.84(\mathrm{~m}, 2 \mathrm{H}, 6-, 7-\mathrm{H}), 8.20(\mathrm{~m}, 2 \mathrm{H}, 5-, 8-\mathrm{H})$. ${ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=24.32$ (q , dioxolane CH_{3}), 28.35 (t, C-2 CH2 $), 51.01$ (t, 4-C), 52.67 (q, OCH_{3}), 57.68 (t, C-2), $64.50\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 107.92$ (s, dioxolane OCO), 126.12 (d, C-5', C-8'), 126.47 (d, C-5', C-8'), 132.02 (s, C-4a', C-8a'),
132.13 (s, C-4a', C-8a'), 133.73 (d, C-6', C-7'), 133.77 (d, C6', C-7'), 136.91 (d, C-3') 147.78 ($\left.\mathrm{s}, \mathrm{C}-2^{\prime}\right), 168.71$ (s, C-1), 184,69 (s, C-1', C-4'), 184.88 (s, C-1', C-4'), 200.46 (s, C-3). - MS (EI, $80^{\circ} \mathrm{C}$): $m / z(\%)=358(0.6)\left[\mathrm{M}^{+}+1\right], 357$ (3.2) $\left[\mathrm{M}^{+}\right], 342(0.3)\left[\mathrm{M}^{+}+1-\mathrm{OCH}_{3}\right], 325(1.5), 283(2.5), 239$ (12), 113 (10), $99(8), 87(100)$.

2-(1,4-Dioxo-1,4-dihydronaphthalene-2-ylmethyl)-3,5-dioxohexanoic acid methyl ester (19)

A suspension of silica gel $(19 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ was treated with 15% sulfuric acid (1.2 ml) and the suspension was stirred for 10 min . A solution of dioxolane $18(1.0 \mathrm{~g}, 2.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ was then added and stirring was continued for 1 h at $22^{\circ} \mathrm{C}$ (tlc control). The suspension was filtered, the silica gel rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / 2 \% \mathrm{CH}_{3} \mathrm{OH}(100 \mathrm{ml})$, the combined organic phases were washed with water (100 ml), dried, $\left(\mathrm{MgSO}_{4}\right)$, filtered, and purified by crystallization from diethyl ether to afford $19(0.78 \mathrm{~g}, 89 \%)$; p. $65^{\circ} \mathrm{C}$.
$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{6}(328.3) \quad$ Calcd. C 65.85 H 4.91
Found C 66.57 H 4.42
IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): v=3432$ (chelat. OH), $3067(\mathrm{C}-\mathrm{H}), 2957$ (C-H), 1748 (ester CO), 1709 (CO), 1665 (quinone), 1593 (arom. $\mathrm{C}=\mathrm{C}$), 1327, 1300.-UV (methanol): $\lambda_{\text {max }}(\lg)=206 \mathrm{~nm}$ (4.27), 248 (4.33). - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right.$): $\delta=2.05$ (s, $3 \mathrm{H}, 6-\mathrm{H}$), $3.13\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.73\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $2-\mathrm{H}), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.62(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.84\left(\mathrm{~s}, 1 \mathrm{H}, 3^{\prime}-\right.$ H), $7.70-7.82\left(\mathrm{~m}, 6^{\prime}-\mathrm{H}, 7^{\prime}-\mathrm{H}\right), 8.02-8.87\left(\mathrm{~m}, 5^{\prime}-\mathrm{H}, 8^{\prime}-\mathrm{H}\right), 14.98$ (s, 1 H , chelat.-OH). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 60 \mathrm{MHz}\right): \delta=23.68$ (q, C-6), $29.16\left(\mathrm{t}, \mathrm{C}-2 \mathrm{CH}_{2}\right), 52.61\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 53.33(\mathrm{~d}, \mathrm{C}-2)$, 99.64 (d, C-4), 126.00 (d, C-5', C-8'), 126.43 (d, C-5', C-8'), 131.83 (s, C-4a' and C-8a'), 133.61 (d, C-6', C-7'), 133.75 (d, C-6', C-7'), 136.69 (d, C-3'), 147.17 (s, C-2'), 169.23 (s, C-1), 184.47 (s, C-1', C-4'), 184.70 ($\mathrm{s}, \mathrm{C}-1^{\prime}, \mathrm{C}-4$ '), 188.75 ($\mathrm{s}, \mathrm{C}-3$, C-5), 190.08 (s, C-3, C-5). - MS (EI, 75 C): $m / z(\%)=328$ (18) $\left[\mathrm{M}^{+}\right], 310$ (46) $\left[\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right], 296$ (44) $\left[\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{OH}\right]$, 286 (62), 268 (28), 254 (46), 239 (76), 226 (43), 212 (86), 184 (100), $85(80)\left[\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CO}^{+}\right], 43(90)\left[\mathrm{CH}_{3} \mathrm{CO}^{+}\right]$.

4-Acetyl-3-hydroxy-9,10-dioxo-9,10-dihydroanthracene-2carboxylic acid methyl ester (20)
A suspension of $\mathrm{K}_{2} \mathrm{CO}_{3}(1.0 \mathrm{~g}, 7.2 \mathrm{mmol})$ and 18 -crown- 6 (30 mg) in THF (20 ml) was treated with a solution of 19 ($300 \mathrm{mg}, 0.914 \mathrm{mmol}$) (the color changes first to black and then to red). After $5 \mathrm{~min} 0.5 \mathrm{~N} \mathrm{HCl}(40 \mathrm{ml})$ was added and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (each $100 \mathrm{ml})$. The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the filtrate was evaporated to dryness. The residue was crystallized from diethyl ether to afford $\mathbf{2 0}(260 \mathrm{mg}, 88 \%$, yellow needles); m.p. $243{ }^{\circ} \mathrm{C}$.
$\begin{array}{llll}\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{O}_{6}(324.3) & \text { Calcd. } & \text { C } 66.67 & \text { H } 3.73 \\ & \text { Found } & \text { C } 66.63 & \text { H } 3.65\end{array}$
UV(methanol): $\lambda_{\text {max }}(\lg \varepsilon)=207 \mathrm{~nm}(4.27), 255$ (4.43), 269 (4.40), 472 (3.62). - IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $\mathrm{v}=3432$ (chelat. OH), 3073 (C-H), 2959 (C-H), 1711 (aliph. CO), 1676 (quinone), 1292. $-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=2.67(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CO}\right), 4.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.76-7.84(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}, 7-\mathrm{H})$, $8.20-8.24$ (m, $1 \mathrm{H}, 5-\mathrm{H}, 8-\mathrm{H}), 8.28-8.32$ (m, $1 \mathrm{H}, 5-\mathrm{H}, 8-\mathrm{H})$, $8.87(\mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{H}), 11.56\left(\mathrm{~s}, 1 \mathrm{H}\right.$, chelat.-OH). - ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta=31.35\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{CO}\right), 53.83\left(\mathrm{q}, \mathrm{OCH}_{3}\right)$,
117.30 (s, C-4a), 125.67 (s, C-9a), 127.84 (d, C-5, C-8), 128.03 (d, C-5, C-8), 131.51 (d, C-1), 132.89 (s, C-2, C-8a, C-10a), 133.56 (s, C-2, C-8a, C-10a), 133.59 (s, C-2, C-8a, C-10a), 134.74 (d, C-6, C-7), 135.31 (d, C-6, C-7), 135.39 (s, C-4), 161.90 (s, C-3), $169.69\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 181.34$ (s, C-9, C-10), 183.15 (s, C-9, C-10), $202.12\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CO}\right) .-\mathrm{MS}\left(\mathrm{EI}, 100^{\circ} \mathrm{C}\right)$: $m / z(\%)=325(2), 324(8)\left[\mathrm{M}^{+}\right], 310(16), 309(16)\left[\mathrm{M}^{+}-\right.$ $\left.\mathrm{CH}_{3}\right], 293$ (8), 278 (20), 277 (100) [$\left.\mathrm{M}^{+}-\mathrm{CH}_{3}-\mathrm{CH}_{3} \mathrm{OH}\right], 249$ (20), 193 (8), 165 (18), 137 (29).

4-Acetyl-3-hydroxy-9,10-dioxo-9,10-dihydroanthracene-2carboxylic acid (21)
A solution of ester $20(110 \mathrm{mg}, 0.34 \mathrm{mmol})$ in a mixture of $\mathrm{CH}_{3} \mathrm{OH}(50 \mathrm{ml})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was treated under nitrogen with $2 \mathrm{~N} \mathrm{NaOH}(0.7 \mathrm{ml})$ and the mixture was stirred for 24 h at $22^{\circ} \mathrm{C}$. The solution was acidified by addition of $1 \mathrm{NHCl}(2 \mathrm{ml})$, the solvent was removed at reduced pressure, and the residue was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml}, 5 \%$ $\left.\mathrm{CH}_{3} \mathrm{OH}\right)$. The solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and evaporated at reduced pressure to afford acid 21 ($95 \mathrm{mg}, 90 \%$); m.p. $248^{\circ} \mathrm{C}$ (decomp.).
$\begin{array}{llll}\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{O}_{6}(310.3) & \text { Calcd. } & \mathrm{C} 65.81 & \mathrm{H} 3.25 \\ & \text { Found } & \mathrm{C} 65.36 & \mathrm{H} 3.43\end{array}$
UV (methanol): $\lambda_{\max }(\lg \varepsilon)=207 \mathrm{~nm}(4.19), 251$ (4.29), 278 (4.31). - IR (KBr, cm^{-1}): $v=3410(\mathrm{OH}), 1707$ (acid CO), 1676 (quinone), 1590 (arom. $\mathrm{C}=\mathrm{C}$), 1572, 1335, 1298, 1136. $-{ }^{1} \mathrm{H}-\mathrm{NMR}$ ([D $\left.\mathrm{D}_{6}\right]$-DMSO, 200 MHz): $\delta=2.49(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CO}\right), 7.87-7.99(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}, 7-\mathrm{H}), 8.11-8.23(\mathrm{~m}, 2 \mathrm{H}$, $5-\mathrm{H}, 8-\mathrm{H}$), 8.61 (s, $1 \mathrm{H}, 1-\mathrm{H}$). - ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($\left[\mathrm{D}_{6}\right]$-DMSO, 50 MHz): $\delta=31.63$ (q, CH3CO), 120.86 (s, C-4a, C-9a), 122.78 (s, C-4a, C-9a), 127.54 (d, C-5, C-8) 127.73 (d, C-5, $\mathrm{C}-8$), 131.15 (d, C-1), 133.03 (s, C-2, C-4, C-8a, C-10a), 133.81 (s, C-2, C-4, C-8a, C-10a), 134.01 (s, C-2, C-4, C-8a, C-10a), 134.16 (s, C-2, C-4, C-8a, C-10a), 134.99 (d, C-6, C7), 135.77 (d, C-6, C-7), 166.07 (s, C-3), 170.57 (s, $\mathrm{CO}_{2} \mathrm{H}$), 181.45 ($\mathrm{s}, \mathrm{C}-9, \mathrm{C}-10$), 183.92 ($\mathrm{s}, \mathrm{C}-9, \mathrm{C}-10$), 202.82 (s, $\left.\mathrm{CH}_{3} \mathrm{CO}\right) .-\mathrm{MS}\left(\mathrm{EI}, 100^{\circ} \mathrm{C}\right): m / z(\%)=309(2),\left[\mathrm{M}^{+}-1\right]$, 295 (2) [$\left.\mathrm{M}^{+}-\mathrm{CH}_{3}\right], 278$ (22), 277 (100) [$\left.\mathrm{M}^{+}-1-\mathrm{CH}_{3} \mathrm{OH}\right]$, 249 (18), 235 (8), 193 (10), 165 (20), 137 (22), 87 (76), 43 (45) $\left[\mathrm{CH}_{3} \mathrm{CO}^{+}\right]$.
[4] K. Krohn, E. Roemer, M. Top, C. Wagner, Angew. Chem. 105 (1993) 1220
[5] K. Krohn, G. Schäfer, Liebigs Ann. Chem. 1996, 265
[6] K. Krohn, K. Khanbabaee, J. Micheel, Liebigs Ann. Chem. 1995, 1529
[7] K. Krohn, K. Khanbabaee, P. G. Jones, Liebigs Ann. Chem. 1995, 1981
[8] W. M. Owton, M. Brunavs, M. V. Miles, D. R. Dobson, D. J. Steggles, J. Chem. Soc., Perkin Trans. 1 1995, 931
[9] S. L. Carney, C. A. Hicks, B. Tree, R. J. Broadmore, Inflamm. Res. 44 (1995) 182
[10] K. Krohn, Liebigs Ann. Chem. 1983, 2151
[11] G. A. Kraus, J. A. Walling, Tetrahedron Lett. 27 (1986) 1873
[12] F. M. Hauser, C. Takeuchi, H. Yin, S. A. Corlett, J. Org. Chem. 59 (1994) 258
[13] J. K. Sutherland, P. Towers, J. Chem. Soc., Chem. Commun. 1981, 740
[14] K. Eckardt, D. Tresselt, G. Schumann, W. Ihn, C. Wagner, J. Antibiot. 38 (1985) 1034
[15] R. Adams, T. A. Geissman, B. R. Baker, J. Am. Chem. Soc. 63 (1941) 528
[16] T. M. Harris, P. J. Wittek, J. Am. Chem. Soc. 97 (1975) 3270
[17] K. Krohn, S. Gringard, G. Börner, Tetrahedron: Asymmetry 5 (1994) 2485
[18] F. Huet, A. Lechevallier, M. Pellet, J. M. Conia, Synthesis 1978, 63
[19] K. Krohn, A. Michel, U. Flörke, H.-J. Aust, S. Draeger, B. Schulz, Liebigs Ann. Chem. 1994, 1093
[20] M. Fetizon, M. Golfiner, Compt. Rend. 267 (1968) 900
[21] I. G. Green, J. Chem. Educ. 59 (1982) 698
[22] J. R. Grunwell, A. Karpides, C. T. Wigal, S. W. Heinzmann, J. Parlow, J. A. Surso, L. Clayton, F. J. Fleitz, M. Daffner, J. E. Stevens, J. Org. Chem. 56 (1991) 91
[23] T. J. Tewson, M. J. Welch, J. Org. Chem. 43 (1978) 1090
[24] I. Antonini, T. S. Lin, L. A. Cosby, Y. R. Dai, A. C. Sartorelli, J. Med. Chem. 25 (1982) 730

References

[1] G. Sartori, F. Bigi, X Tao, Porta, C., R. Maggi, G. Predieri, M. Lanfranchi, M.P. Pellinghelli, J. Org. Chem. 60 (1995) 6588
[2] O. Bayer in Methoden der Organischen Chemie (Edit.: Houben-Weyl-Müller) Thieme, Stuttgart 1979
[3] M.J. Taschner in Asymmetric Diels-Alder Reactions (Edit.: T. Hudlicky) JAI Press, London 1989

Adress for correspondence:
Prof. Dr. K. Krohn
Fachbereich Chemie und Chemietechnik der Universität - GH Paderborn
Warburger Str. 100
D-33098 Paderborn, Germany

